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General algorithm of Chemical Reaction Engineering

• Mole balance• Mole balance

• Rate laws• Rate laws

• Stoichiometry• Stoichiometry

• Energy balance• Energy balance

•Combine and Solve•Combine and Solve



Classification of reactions

• Phases involved:
– Homogeneous reaction – reaction that occur in one phase 
– Heterogeneous reaction – reaction that involves more 

than one phase and usually occurs at the interface 
between the phases (e.g. heterogeneous catalysis)

• Equilibrium position
– Reversible reaction – reaction that can proceed in either 

direction depending on the concentration of reagents and 
products

– Irreversible reaction – reaction that at given conditions can 
be assumed to proceed in one direction only (i.e. reaction 
equilibrium involves much smaller concentration of the 
reagents)



Elementary reactions
• Kinetics of chemical reactions determined by the 

elementary reaction steps.
• Molecularity of an elementary reaction is the number 

of molecules coming together to react in one reaction 
step (e.g. uni-molecular, bimolecular, termolecular)

• Probability of meeting 3 molecules is very small, so 
uni-molecular and bimolecular reaction are the only 
two to consider



Elementary reactions

Uni-molecular: first order in the reactant 

[ ] [ ]d AA P k A
dt

⎯⎯→ = −

Bimolecular: first order in the reactant 

[ ] [ ][ ]d AA B P k A B
dt

+ ⎯⎯→ = −

Proportional to collision rate

2H Br HBr Br+ ⎯⎯→ +

! rate of disappearance of individual components can be 
calculated as: 

1 i

i

dn dv
dt dt

ξ
ν

= =



Relative Rates of Reaction

• if we are interested in species A we can use A as the basis of 
calculation and define the reaction rate with respect to A

aA bB cC dD+ ⎯⎯→ +

b c dA B C D
a a a

+ ⎯⎯→ +

• Reaction rate is not a constant, it depends
- on concentration of the reagents
- on the temperature
- on the total pressure in the reactions involving gas phase
- ionic strength and solvent in liquid state
- presence of a catalyst
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Rates of Reaction

• units of the reaction rate constant
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• reaction order: ...++= βαn

• reaction rate is found experimentally, data on frequency factor 
(A), activation energy (E) and the order of the reaction can be 
found in relevant handbooks. 



Non-Elementary Reaction rates

• The reaction rate dependence on the concentration 
and temperature will become more complicated when 
a reaction comprising several elementary steps is 
considered (incl. catalytic and reversible reactions)



Reversible reaction
• Let’s consider a reaction of diphenyl formation
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• rate of change for benzene
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Equilibrium constant

2
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• noticing that the equilibrium constant: 1 1CK k k−=

in terms of 
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Few more facts of K
• From thermodynamics 0ln rRT K G=−Δ

• for gases, K can be defined in terms of pressures or 
concentrations
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• temperature dependence:
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Reaction rate
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Dependence on the concentration can be calculated knowing reaction 
mechanism, as before

Temperature dependence: 
Arrhenius equation

/( ) E RTk T Ae−=

• Below, we will consider only the concentration and 
temperature dependence of the reaction rate



Reaction rate
• From the collision theory, only molecules 

with the energy higher than the activation 
energy can react:

• The usual “rule of thumb that the 
reaction rate doubles with every 
10ºC is not always true:
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Summary of the Reactor design equations
In the previous lecture we found design equations  for various reactors: 

To solve them we need to find disappearence rate as a function of conversion: 

)(XgrA =−



Relative Rates of Reaction

• if we are interested in species A we can define A as the basis 
of calculation

aA bB cC dD+ ⎯⎯→ +

b c dA B C D
a a a

+ ⎯⎯→ +

• conversion: Moles of A reacted
Moles of A fedAX =

• Let’s see how we can relate it to the reaction rate for various 
types of reactors.



Batch reactor
b c dA B C D
a a a

+ ⎯⎯→ +

• conversion:
Moles of A reacted

Moles of A fedAX =

• number of moles A left after conversion:  
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• number of moles B left after conversion:  
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Batch reactors
• For every component in the reactor we can write after 

conversion X is achieved: 

δ

δ - the total molar increase per mole of A reacted XNNN ATT ⋅⋅+= 00 δ



Batch reactor
• Now, if we know the number of moles of every component

we can calculate concentration as a function of conversion. 
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• However, generally V can be a function of X as well...
• In a constant volume reactor (e.g. batch reactor, liquid 
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Flow reactors

• Equations for flow reactors are the same with number 
of moles N changed for flow rate F [mol/s]. 



Flow reactors

• Stoichiometric table for a flow system



Flow reactors

• For a flow system a concentration at any point can be 
obtained from molar flow rate F and volumetric flow 
rate

• For reaction in liquids, the volume change is 
negligible (if no phase change occurred):
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Reactions involving volume change
• In a gas phase reaction a molar flow rate might 

change as the reaction progresses

2 2 33 2N H NH⎯⎯→+ ←⎯⎯
4 moles 2 moles

• In a gas phase reaction a molar flow rate might 
change as the reaction progresses



Batch reactor with variable volume
• As such it would be a rare case (e.g. internal combustion 

engine), but a good model case:

• If we divide the gas equation at any moment in time by the 
one at moment zero:

RTZNPV T=
compressibility factor
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Flow reactor with variable flow rate
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• Using the gas equation we can derive the total 
concentration as:
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Flow reactor with variable flow rate
• In a gas phase reaction a molar flow rate might 

change as the reaction progresses
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Example 3.6 (p.118)

• For reaction above calculate
– equilibrium conversion in a constant batch reactor;
– equilibrium conversion in a flow reactor;
– assuming the reaction is elementary, express the rate of 

the reaction
– plot Levenspil plot and determine CSTR volume for 80% 

conversion
• assume the feed is pure N2O4 at 340K and 202.6kPa. 

Concentration equilibrium constant: KC=0.1mol/l; 
kA=0.5 min-1.

2 4 22N O NO⎯⎯→←⎯⎯



Example
1. Batch reactor
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Example
2. Flow reactor
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Example
3. Rate laws 2
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– Levenspiel plot



Example
4. CSTR volume for X=0.4, feed of 3 mol/min 

– Constant volume
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– PFR – in the next lecture ☺
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Problems

• Class: P3-15
• Home: P3-7, P3-13


